深度技术

站内搜索
“放弃自研域控制器”,缘何成为一些L4级自动驾驶公司的共同选择?

“放弃自研域控制器”,缘何成为一些L4级自动驾驶公司的共同选择?

最近,Robotaxi公司“降维”进军L2前装量产的话题有点火,最新的案例之一是文远知行跟博世的合作。但在笔者看来,这个案例的亮点并不在“L2”,而在于文远知行正在“做减法”,这是一个非常明智的决策。具体地说,这家Robotaxi赛道上的头部公司在进军前装量产时,聚焦于自己更擅长的软件算法,而自己不十分擅长、或做起来性价比不高的硬件集成,则交给传统Teir 1来做。在一些量产项目上放弃自研域控制器,文远知行既不是第一个,也不会是最后一个。2020年9月底,笔者在上海跟某商用车ADAS公司销售部的
“敏捷”适用于汽车软件开发吗?

“敏捷”适用于汽车软件开发吗?

最近几年一直都有很多关于“敏捷”如何在汽车行业应用的讨论,看了一些文章,大都是说“敏捷”在IT行业如何的成功、提升了多少效率、帮助多少企业脱颖而出,因此汽车行业也应该立即效法实施等等。可是是否应该实施、究竟该如何实施、现有的汽车软件开发流程如何改造等等却没有看到任何有一点价值的东西。 我们先看看现在标准的汽车行业开发流程,即所谓的标准“瀑布式开发流程” 究竟是什么样子的,为啥被全世界的OEM们用了这么多年。 瀑布是什么?
2022年,通信行业有哪些看点?

2022年,通信行业有哪些看点?

█ 看点1:5G专网 2021年,是5G toB的发展元年。这一年,在政府的巨额资金支持下,在运营商和厂商的资源堆积下,各个行业都扶持了大量的5G标杆应用,例如5G工厂、5G码头、5G矿山等。 2022年的问题在于,如何将这些标杆项目进行低成本复制。 也就是说,如果国家不再砸钱,5G是否能靠自己的本事,活下去。运营商和厂商,从“重点保障单个项目”,到“普遍支撑N个项目”,是否还能搞得定。 5G toB的进一步推进,引发了人们对5G专网的关注
5G R17中的RedCap是什么技术?

5G R17中的RedCap是什么技术?

近期,3GPP宣布5G R17标准冻结。在R17版本中,RedCap这个“小红帽”尤为显眼,被誉为5G物联网不可或缺的一块大蛋糕。那究竟什么是RedCap?下面来聊一聊。为什么要定义RedCap?我们先来看看可穿戴设备(包括可穿戴手表、AR/VR眼镜等)、工业无线传感器、监控摄像头这三类终端对网络能力的需求:众所周知,5G eMBB支持载波带宽100MHz以上,峰值速率可达10Gbps;uRLLC支持毫秒级时延和超高可靠性;而mMTC由4G时代的NB-IoT和eMTC演进而来,主要支持带宽小于1
6G,到底有哪些挑战?

6G,到底有哪些挑战?

█ 从“尽力而为”到“确定性” 一直以来,由于IP协议的属性,移动互联网提供的是“尽力而为”的服务。 在4G时代,由于网络主要连接人,这种“尽力而为”的方式可以满足人们的连接需求,毕竟,轻微的网络延迟和丢包,一般不会影响我们上网购物甚至在线看视频的体验。 但5G和6G网络的连接范围将从人扩展到千行万业到万物,这要求网络必须能提供低时延、高可靠的确定性服务能力,否则就可能影响企业持续稳定生产。
AEBS,自动驾驶演艺圈喜欢喊“卡”的导演

AEBS,自动驾驶演艺圈喜欢喊“卡”的导演

“合抱之木,生于毫末”,这是笔者修炼内功心法时常用的自我催眠之术。“九层之台,起于累土”,这是笔者看到自动驾驶揠苗助长景象时常想劝诫的醒世之言。地基不牢,自动驾驶高楼即使盖到九十九层,一阵大风刮过,随时有可能楼倾猢狲散。 一步到位实现L4/L5自动驾驶的愿景依旧性感且妖娆,宛如远处月光下白裙姑娘曼妙的舞姿,没有技术直男愿意拒绝。但视觉审美终有疲劳,灵魂共鸣才更长久。笔者刚进入自动驾驶行业时,也是做的L4自动驾驶相关产品。刚开始的时候,感觉把L
AUTOSAR中的功能安全—— 硬件诊断

AUTOSAR中的功能安全—— 硬件诊断

为实现功能安全应用的现代微控制器是非常复杂的设备,为了保证安全系统中,微控制器可以作为其中的一部分并且达到设计的安全等级,需要在硬件与软件中完成必要的功能安全机制与措施,完成必要的集成工作。 微控制器必须支持安全系统的前提假设——提供的功能是可信的,这个可以通过执行硬件诊断机制来支持。本节主要介绍AUTOSAR中硬件诊断是如何被支持的。 Core Test 总体目标是为了检测处理单元可能的故障而导致的不正确的执行结果,Core Test执行的控制单元软件的测试运
C-V2X与5G的车路协同解决方案为汽车开启上帝视角

C-V2X与5G的车路协同解决方案为汽车开启上帝视角

5G 有望为汽车行业带来新的创新和应用,但它并非指日可待,而汽车行业将出现连接性“创新鸿沟”,最好用 LTE-V 来填补——这是一种灵活且专用的未来车辆通信解决方案。 在实践中,C-V2X性能最佳的解决方案可能是结合传感器和摄像头的通信系统,辅以高清地图系统,该系统反过来通过蜂窝网络接收实时更新,以及直接的车对车与自组织网络功能的通信。(由于与移动性相关的因素,例如行驶速度和信道特性,对直接车对车通信的要求因设备而异。如果由于协议的原因,跳数变得
CAN总线基础入门总结

CAN总线基础入门总结

1. 简介 CAN总线由德国BOSCH公司开发,最高速率可达到1Mbps。CAN的容错能力特别强,CAN控制器内建了强大的检错和处理机制。另外不同于传统的网络(比如USB或者以太网),CAN节点与节点之间不会传输大数据块,一帧CAN消息最多传输8字节用户数据,采用短数据包也可以使得系统获得更好的稳定性。CAN总线具有总线仲裁机制,可以组建多主系统。  2. CAN标准 CAN是一个由国际化标准组织定义的串行通讯总线。最初是用于汽车工业,使用两根信号总线代替汽车内复杂的走线。CAN
CAN诊断轻松入门:网络层与应用层基本知识讲解

CAN诊断轻松入门:网络层与应用层基本知识讲解

1. OSI(Open System Interconnect) OSI(Open System Interconnect),即开放式系统互联。一般都叫OSI参考模型,是ISO组织在1985年研究的网络互联模型。该体系结构标准定义了网络互联的七层框架(物理层、数据链路层、网络层、传输层、会话层、表示层和应用层),即OSI(参考:开放系统互连参考模型_百度百科)。简单地说OSI即同一通信网络中,各个节点共同遵循的一套数据交互模型。 CAN诊断通信是基于OSI参考模型建立的,CAN诊断包含诊
GNSS和INS的松耦合、紧耦合与深耦合——自动驾驶高精定位

GNSS和INS的松耦合、紧耦合与深耦合——自动驾驶高精定位

自动驾驶全局定位里最能打的非高精度组合导航莫属,空旷地带、短暂遮挡场景都是它施展才华的舞台。 目前可以实现全局定位的主要有两套系统:GNSS(Global Navigation Satellite System,全球卫星导航系统)和INS(Inertial Navigation System,惯性导航系统)。 GNSS工作原理简介 GNSS定位的基本原理是通过测量在能接收到四颗及以上数量已知位置卫星到地面接收机的位置地方,同时综合四颗及以上数量卫星的数据,来计算出地面接收机的具体位置。
IMU, 自动驾驶定位团队“小而美”的队员

IMU, 自动驾驶定位团队“小而美”的队员

自动驾驶定位团队中有位高权重的九代长老GNSS,有颜值担当的华山师妹SLAM,也有雄踞一方的边塞将军UWB。每人都练就了一门绝世武功,GNSS修炼的是室外吸“星”大法,SLAM修炼的是勾魂摄魄妖法,UWB修炼的是近身搏击之术。 然而每门绝世武功在自动驾驶圈都有一个众人皆知的致命缺点,GNSS在有遮挡的环境下功力全失,SLAM在特征重复或缺失的地方威力大减,UWB在面对飞镖远战对手时束手无策。自动驾驶定位团队要想克服长尾问题从而获得小数点后好几个9的安全性,势必还需要一位
加载更多